翻訳と辞書
Words near each other
・ Lévy C curve
・ Lévy distribution
・ Lévy family of graphs
・ Lévy flight
・ Lévy flight foraging hypothesis
・ Lévy hierarchy
・ Lévy Madinda
・ Lévy Makani
・ Lévy metric
・ Lévy process
・ Lévy's constant
・ Lévy's continuity theorem
・ Lévy's modulus of continuity theorem
・ Lévy-Biche LB.2
・ Lévyne
Lévy–Prokhorov metric
・ Lévézou
・ Lévêque, Haiti
・ Lézan
・ Lézard rouge
・ Lézarde
・ Lézarde Express Régionale
・ Lézarde Rivière
・ Lézardrieux
・ Lézat
・ Lézat-sur-Lèze
・ Lézignan
・ Lézignan Sangliers
・ Lézignan, Hautes-Pyrénées
・ Lézignan-Corbières


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lévy–Prokhorov metric : ウィキペディア英語版
Lévy–Prokhorov metric
In mathematics, the Lévy–Prokhorov metric (sometimes known just as the Prokhorov metric) is a metric (i.e., a definition of distance) on the collection of probability measures on a given metric space. It is named after the French mathematician Paul Lévy and the Soviet mathematician Yuri Vasilyevich Prokhorov; Prokhorov introduced it in 1956 as a generalization of the earlier Lévy metric.
==Definition==

Let (M, d) be a metric space with its Borel sigma algebra \mathcal (M). Let \mathcal (M) denote the collection of all probability measures on the measurable space (M, \mathcal (M)).
For a subset A \subseteq M, define the ε-neighborhood of A by
:A^ := \ = \bigcup_ B_ (p).
where B_ (p) is the open ball of radius \varepsilon centered at p.
The Lévy–Prokhorov metric \pi : \mathcal (M)^ \to [0, + \infty) is defined by setting the distance between two probability measures \mu and \nu to be
:\pi (\mu, \nu) := \inf \left\ \ \nu (A) \leq \mu (A^) + \varepsilon \ \text \ A \in \mathcal(M) \right\}.
For probability measures clearly \pi (\mu, \nu) \le 1.
Some authors omit one of the two inequalities or choose only open or closed A; either inequality implies the other, and (\bar)^\varepsilon = A^\varepsilon, but restricting to open sets may change the metric so defined (if M is not Polish).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lévy–Prokhorov metric」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.